1,312 research outputs found

    Modeling of light pipes for the optimal disposition in buildings

    Get PDF
    A light pipe is an excellent solution to transport and distribute daylight into environments without or with little lighting, guaranteeing comfort inside the rooms. As stated in the literature, the evaluation of the performances of light pipes presents numerous complexities, making the work very difficult for technicians and designers. This study is aimed to present a methodology that is able to identify the potential of light pipes using indices such as daylight autonomy (DA), continuous daylight autonomy (DAc), and useful daylight illuminance (UDI). This paper presents an analysis of daylight obtained by several configurations of simple models of light pipes installed into a 5 7 5 m plant area room. All simulations are carried out in a DAYSIM environment, which allows calculating the annual availability of daylight based on a RADIANCE raytracer backward. Several daylight conditions were analyzed for different light pipe configurations, considering different pipe lengths and a variable number of light pipes. The light pipes are tested also in the horizontal position, for different orientations. The results of all the combinations were compared with the performances of a window with dimensions equal to 1/8 of the internal surface, which was in accordance with the minimum value to be guaranteed by the Italian Regulation (D.M. 5 July 1975 n. 190) for different orientations. The results indicated a difference in daylight distribution, showing a strong correlation between the percentage levels of DA and DAc with the length and number of pipes, during different periods of the year. The simulated model is strongly influenced by the aspect ratio (R = diameter/length). The results show that the illuminance levels decrease drastically, increasing the length

    A new device hypothesis for water extraction from air and basic air condition system in developing countries

    Get PDF
    This work proposes a new device for air treatment with dehumidification and water recovery/storage, with possible mitigation of indoor environmental conditions. The system is based on Peltier cells coupled with a horizontal earth‐to‐air heat exchanger, it is proposed as an easy‐to-implement alternative to the heat pumps and air handling units currently used on the market, in terms of cost, ease of installation, and maintenance. The process provides the water collection from the cooling of warm‐humid air through a process that leads to condensation and water vapor separation. The airflow generated by a fan splits into two dual flows that lap the two surfaces of the Peltier cells, one flow laps the cold surfaces undergoing sensible, latent cooling with dehumidification; the other flow laps the hot surfaces and heats up. The airflow undergoes thermal pre‐treatment through the underground horizontal geothermal pipe that precedes the Peltier cells. In the water storage tank, which also works as a mixing chamber, the two air streams are mixed to regulate the outlet temperature. The system can be stand‐alone if equipped with a photovoltaic panel and a micro wind turbine, able to be used in places where electricity is absent. The system, with different configurations, is modeled in the African city Kigali, in Rwanda

    Vitamin D and atopic dermatitis in childhood.

    Get PDF
    Vitamin D features immunomodulatory effects on both the innate and adaptive immune systems, which may explain the growing evidence connecting vitamin D to allergic diseases. A wealth of studies describing a beneficial effect of vitamin D on atopic dermatitis (AD) prevalence and severity are known. However, observations linking high vitamin D levels to an increased risk of developing AD have also been published, effectively creating a controversy. In this paper, we review the existing literature on the association between AD and vitamin D levels, focusing on childhood. As of today, the role of vitamin D in AD is far from clear; additional studies are particularly needed in order to confirm the promising therapeutic role of vitamin D supplementation in childhood AD

    Thermal Modeling of a Historical Building Wall: Using Long-Term Monitoring Data to Understand the Reliability and the Robustness of Numerical Simulations

    Get PDF
    Thermal modeling of building components plays a crucial role in designing energy efficiency measures, assessing living comfort, and preventing building damages. The accuracy of the modeling process strongly depends on the reliability of the physical models and the correct selection of input parameters, especially for historic buildings where uncertainties on wall composition and material properties are higher. This work evaluates the reliability of building thermal modeling and identifies the input parameters that most affect the simulation results. A monitoring system is applied to a historic building wall to measure the temperature profile. The long-term dataset is compared with the result of a simulation model. A sensitivity analysis is applied for the determination of the influential input parameters. A two-step optimization is performed to calibrate the numerical model: the first optimization step is based on an optimized selection of the database materials, while the second optimization step uses a particle swarm algorithm. The results indicate that the output of the simulation model is largely influenced by the coefficients describing the coupling with the boundary conditions and by the thermal conductivities of the materials. Very good results are obtained already after the first optimization step ((Formula presented.) while the second optimization step improves further the agreement ((Formula presented.). The parameter values reported in the datasheets do not match those found through optimization. Even with extensive optimization using an algorithm, starting with monitoring data is insufficient to identify material parameter values

    Energy Independence of a Small Office Community Powered by Photovoltaic-Wind Hybrid Systems in Widely Different Climates

    Get PDF
    Hybrid renewable energy systems are an optimal solution for small energy communities’ energy supply. One of the critical issues is the strong correlation of these systems with outdoor climatic conditions. The goal is to make local communities increasingly energy independent. To this end, an in-depth analysis of the behaviour of hybrid photovoltaic (PV)–wind systems powering small office communities in 48 locations around the world characterized by widely varying climates was conducted. System sizes, assumed to be stand-alone or grid-connected, were varied, for a total of 343 system power configurations. Highest satisfied load fraction (SLF) values are obtained with a significant predominance of PV over wind; the trend is more pronounced in dry and continental climates (zones B and D according to the Köppen climate classification). The utilization factor (UF) values of 1 are rarely reached and never in the wind-only or PV-only configurations. In all climates, the grid energy interaction factor (GEIF) values of zero are never reached but come very close. The benefit-cost ratio (BCR) of grid-connected systems is significantly higher than stand-alone systems

    Eco-Sustainable Energy Production in Healthcare: Trends and Challenges in Renewable Energy Systems

    Get PDF
    The shift from fossil fuels to renewable energy systems represents a pivotal step toward the realization of a sustainable society. This study aims to analyze representative scientific literature on eco-sustainable energy production in the healthcare sector, particularly in hospitals. Given hospitals’ substantial electricity consumption, the adoption of renewable energy offers a reliable, low-CO2 emission solution. The COVID-19 pandemic has underscored the urgency for energy-efficient and environmentally-responsible approaches. This brief review analyzes the development of experimental, simulation, and optimization projects for sustainable energy production in healthcare facilities. The analysis reveals trends and challenges in renewable energy systems, offering valuable insights into the potential of eco-sustainable solutions in the healthcare sector. The findings indicate that hydrogen storage systems are consistently coupled with photovoltaic panels or solar collectors, but only 14% of the analyzed studies explore this potential within hospital settings. Hybrid renewable energy systems (HRES) could be used to meet the energy demands of healthcare centers and hospitals. However, the integration of HRES in hospitals and medical buildings is understudied
    • 

    corecore